Large Scale Data Analysis Techniques in Grinding Planning and Management

Joseph W. Palese, MCE, PE HARSCO Rail

Data Acquisition Platforms

Diagnostic Systems

Data Elements

General Extent of Data — BIG Data

	Per Mi	20,000 mile RR		
	<u>Mbytes</u>	<u>Mbytes</u>		
Rail Defects	0.002	41		
Track Layout	0.7	13,517		
Rail Profile Data	3	50,688		
Corrugation Data	14	282,962		
Dense Profiles	304	6,082,560		
Rail Images	3,244	64,880,640		
Total	3,566	71,310,407		
3 Insp/Yr (Mb)	10,697	213,931,222		
for 20 years	213,931	4,278,624,441		
Petabytes of Data		4.3		

1000 kB kilobyte
1000² MB megabyte
1000³ GB gigabyte
1000⁴ TB terabyte
1000⁵ PB petabyte

Traditional Grinding Planning Activities

- Develop Grinding Plan
 - Performed offline
- Perform Grinding Pre-Inspection
 - Using hy-rail vehicle
- Perform Onboard Monitoring and QC
 - Onboard Grinder
- Monitor Effectiveness
 - Offline

Traditional Analytical Techniques

- Physical and Deterministic Techniques Employed
- Computationally Intensive
- Make Use of Readily Available Data
- Develop Indices for Large Data Sets for Data Reduction
- Provide Information to Railways from Large Data

	Rail	Track	Rail Profile	Corrugation	Dense	Rail
	<u>Defects</u>	<u>Layout</u>	<u>Data</u>	<u>Data</u>	<u>Profiles</u>	<u>Images</u>
Planning						
Pre-Inspection						
Real Time and QC						
Monitoring						

Grinding and BIG Data

- The Five V's of BIG data
 - Volume → 5 Petabytes
 - Variety → profiles, corrugation, track layout, defects, images, crack density, machine performance, etc.
 - Velocity \rightarrow up to 2,500 Hz
 - Veracity → consistent data with some spread in accuracy
 - Value → North American rail budget = \$2B
- While Big Data analysis is being performed, emerging techniques offer the ability to improve the current deterministic methods through advanced stochastic processes

Current Areas for Improvement

- Develop Grinding Plan
 - Use limited amounts of data
 - Simple statistical techniques
 - Only a rough plan

- Real Time Analysis
 - Computational limits
 - Disregard machine data
 - Missing condition elements
 - Missing asset properties

- Pre-Grind Inspection
 - Use limited aspects of data
 - Simple statistical techniques
 - Missing condition elements
 - Missing asset properties

- Effectiveness Monitoring
 - Use limited amounts of data
 - Simple statistical techniques
 - Not correlated to other inspection data

Future of BIG Data Analysis in Grinding

5 Petabytes of data available for mining and analysis

Utilize advanced techniques such as:

- **■**MARS
- Markov Chain Monte Carlo simulation
- ☐ Bayesian Inference
- Machine Learning
- ☐ Many, many more

Expected improvements:

- ☐ Improved grinding pattern prediction
- ☐ Refined rail template definition
- ☐ Improved makeup of grinding stones
- ☐ Grinding cycle management
- ☐ Improved grinder utilization
- ☐Many, many more

Strategic Initiatives

BIG Data available to define key relationships unknown to date

Conclusions

- Rail grinding planning and management is a Big Data exercise
- Current techniques are effective but do not make use of large amounts of data
- Emerging techniques can be applied to provide:
 - More effective results in the planning and management process
 - Further useful information regarding grinding and the rail asset in a more strategic manner

